Magnel Diagram for mid-span

Constructing Magnel Diagram for prestressed Concrete beam – Worked Example

Share this post on:

This article presents a worked example on the construction of magnel diagram for the design of a prestressed beam section. The beam that shall be designed is the same as that on which stress check was carried out here. The cross-section of the beam is provided in the figure below for easy reference.

Section of I beam
Section of I beam

Geometric Properties of the Beam

The geometry properties are also re-provided below, you can check the previous post here to study how the geometric properties are calculated.

Area of section (A) = = 1500000 mm2  

Distance of centroid from soffit (yb) = 1510mm

Distance of centroid to top fiber (yt) = 990mm

Second moment area (I) =1.26 x 1012 mm  

Section modulus to top fiber (Zt) = 1273585859 mm6  

Section modulus to bottom fiber (Zb) = 835000000mm6  

Estimation of Internal forces and Load factors

The internal forces also remain the same, these are also reproduced below for easy follow up.

Self-weight of beam

= Area x unit weight of concrete

$=1.5 \times 10^6 \times 10^{-6} \times 25=37.5 \mathrm{KNm}$

Moment due to self-weight

= (37.5 x 20²)/8 = 1875KNm

Moment due to dead and live load

= ((37.5+80) x 20² )/8 = (117.5 x 20²)/8 = 5875KNm

Prestress force at transfer

At transfer 10% of the jacking prestress force is lost.

Prestress at transfer (Pt) = 90/100 x 1000KN = 900KN

Load factor at transfer

ϒsup= 1.1

Load factor at service

ϒinf= 0.9

 

Estimation of Permissible Stresses

The permissible stresses in the beam are to be estimated as follows

Permissible stress at transfer

Compressive stress = 0.6fck = 0.6 x 25 = -15N/mm2

Tensile stress = 0.3 fck^3/2 = 0.3 x 25^ (3/2) = 2.6N/mm2

Permissible stress at service

Compressive stress = 0.6fck = 0.6 x 40 = -24N/mm2

Tensile stress = 0.3 fck^3/2 = 0.3 x 40^ (3/2) = 3.5N/mm2

η = 1- %loss at transfer/ 1 – % loss at service = 0.75/0.25 = 0.83

Evaluation of Magnel Equations and Construction of Magnel diagram

The magnel Equation for at both transfer and service are evaluated and plotted as shown in the following paragraphs

Magnel equation for mid-span

At transfer

Top

$
\frac{10^8}{P}\,\,\geqslant \,\,\frac{\left( -\frac{1}{A}\,\,+\,\,\frac{e}{Z_t} \right)}{\frac{\eta \,\,M_{\min}}{\gamma _{sup\,\,}Z_t}+\frac{\eta \,\,f_{tt}}{\gamma _{sup}}}x 10^8
$

Substituting the values of parameters in the equation

$
\frac{10^8}{P}\,\,\geqslant \,\,\frac{\left( -\frac{1}{1500000}\,\,+\,\,\frac{e}{1273585859} \right)}{\frac{\0.93 x\,\,1875 x 10^6}{1.1 x {\,\,}1273585859}+\frac{\0.93\,\,2.6{}}{1.1{}}}x 10^8
$

Substituting different values of eccentricity into the equation gives corresponding values of 108/P as shown in the table below

-300       – 29.4

-200       -24.4

-100        -21.8

0              -16.7

200        -11.5

400          -6.4

600        -1.3

800           3.9

1000         9.0

1200        11.6

1400     14.1

The values in the table are plotted as shown below.

Transfer top
Transfer top

$
\frac{10^8}{P}\,\,\geqslant \,\,\frac{\left( -\frac{1}{A}\,\,-\,\,\frac{e}{Z_b} \right)}{\frac{\eta \,\,M_{\min}}{\gamma _{sup\,\,}Z_b}+\frac{\eta \,\,f_{tc}}{\gamma _{sup}}}x 10^8
$

Substituting the values of parameters in the equation

$
\frac{10^8}{P}\,\,\geqslant \,\,\frac{\left( -\frac{1}{1500000}\,\,-\,\,\frac{e}{ 835000000} \right)}{\frac{\0.93 \,\,1875 x 10^6}{1.1  x {\,\,}835000000}+\frac{\0.93\,\,-15{}}{1.1{}}}x 10^8
$

Substituting different values of eccentricity into the equation gives corresponding values of 108 /P as shown in the table below

 

-300      2.4

-200      3.3

-100      4.2

0              5.1

200        7.0

400         8.8

600        10.6

800         12.4

1000       14.3

1200     16.1

1300     17.0

1400     17.9

The values in the table are plotted as shown below.

transfer bottom

At Service

$
\frac{10^8}{P}\,\,\leqslant \,\,\frac{\left( -\frac{1}{A}\,\,+\,\,\frac{e}{Z_t} \right)}{\frac{\,\,M_{\max}}{\gamma _{inf\,\,}Z_t}+\frac{\eta \,\,f_{sc}}{\gamma _{inf}}}x 10^8
$

Substituting the values of parameters in the equation

$
\frac{10^8}{P}\,\,\leqslant \,\,\frac{\left( -\frac{1}{1500000}\,\,+\,\,\frac{e}{1273585859} \right)}{\frac{\,\,5875 x 10^6}{0.9 x {\,\,}1273585859}+\frac{\0.93 \,\,-24{}}{0.9{}}}x 10^8
$

Substituting different values of eccentricity into the equation gives corresponding values of 108 /P as shown in the table below

-300             4.2

-200             3.8

-100             3.5

0                   3.1

200               2.3

400              1.6

600              0.9

800               0.2

1000            -0.6

1200          -1.3

1300         -1.6

1400          -2.0

The values in the table are plotted as shown below.

Service top

$
\frac{10^8}{P}\,\,\geqslant \,\,\frac{\left( -\frac{1}{A}\,\,-\,\,\frac{e}{Z_b} \right)}{\frac{\,-M_{\max}}{\gamma _{inf\,\,}Z_b}+\frac{\eta \,\,f_{st}}{\gamma_{inf}}}x 10^8
$

 

Substituting the values of parameters in the equation

$
\frac{10^8}{P}\,\,\geqslant \,\,\frac{\left( -\frac{1}{1500000}\,\,-\,\,\frac{e}{ 835000000} \right)}{\frac{\,-5875 x 10^6}{0.9 x {\,\,}835000000}+\frac{\0.93\,\,3.5{}}{0.9{}}}x 10^8
$

Substituting different values of eccentricity into the equation gives corresponding values of 108 /P as shown in the table below

-300             7.8

-200             10.9

-100             13.9

0                   17.0

200               23.9

400               21.2

600               35.3

800               41.5

1000            47.6

1200           53.7

1300           56.7

1400            59.8

The values in the table are plotted as shown below.

Service bottom

Estimation of limiting eccentricity

The cover to the tendon is taken as 100mm.

Let’s take 110mm as possible allowance for multilayered tendons: 100 + 110 = 210

Maximum eccentricity possible = 1510 – 200 = 1300mm

This is plotted as shown below:

Limiting eccentricity
limiting eccentricity

 

Estimation of the jacking prestress force

When these plots are combined together then a magnel diagram is produced with feasible region coloured as shown below:

Magnel Diagram for mid-span
Magnel Diagram for mid-span

 

From the magnel diagram 108 /P is taken as 55

P = (108 /55)/1000 = 1818KN

This is the prestress at service after long-term loss. To get the stress during jacking operation, the loss has to be accounted for.

Since the loss at service is 0.25

Pjack = 1818/0.25 = 2424KN

 

Detailing of tendons

Ultimate strength of tendon (fpk) = 1860MPa

Yield strength of tendon (fpk0.1) = 0.85fpk = 1581MPa

Design strength of tendon (fpd) = Fpk0.1/1.15 = 1374MPa

Capacity of tendon = fpd x As

= 1374 x 112 x = 154KN

No of tendons required = 2424/154 = 15.7

We shall take this as 16 tendons.

The 16 tendons shall be placed in the section as shown below.

Beam cross section with required tendons
Beam cross section with required tendons

From the section above, the centroid of the tendons to the soffit of the beam is 175mm. Consequently, the eccentricity from the center of the beam is 1335mm. This is greater than 1300 but appreciably less than 1410 which is the factual eccentricity allowing for 100mm cover. 110mm was only added as a precaution in anticipation against multilayered tendon.

On the other hand, since there are 16 tendons in the beam, the actual jacking force is:

16 x 154 = 2464KN

P = 2464KN  e = 1335mm

Stress Check

Let’s run a stress check to scrutinize whether the stresses in the beam violate the permissible stresses.

Stress Calculation at transfer

P = 0.9 x Pjack = 0.9 x 2464 = 2217.6

e = 1335mm

Mid Span top fiber

$\left(\frac{-P}{A}+\frac{P_\epsilon}{Z_t}\right) \Upsilon_{\text {sup }}-\frac{M_{\min }}{Z_t} \leq f_{t t}$

$
\left( \right. \frac{-\text{2217.6}x\,\,10^3}{\text{15}x\,\,10^5}\,\,+\,\,\frac{\text{2217.6}x\,\,10^3\,\,x\,\,1335}{1273585859}\left. \right)1.1 \,\,-\,\,\frac{\text{1875}x\,\,10^6}{1273585859}
$

= (-1.48 + 2.32)1.1 – 1.47

= – 0.54MPa

Mid Span bottom fibre

$\left(\frac{-P}{A}+\frac{-P_\epsilon}{Z_b}\right) \Upsilon_{\text {sup }}+\frac{M_{\min }}{Z_b} \geq f_{t c}$

$
\left( \right. \frac{-\text{2217.6}x\,\,10^3}{\text{15}x\,\,10^5}\,\,-\,\,\frac{\text{2217.6}x\,\,10^3\,\,x\,\,1335}{835000000}\left. \right)1.1 \,\,+\,\,\frac{\text{1875}x\,\,10^6}{835000000}
$

= (-1.48 – 3.54)1.1 + 2.2

= -3.28MPa

Stress Calculation at Service

P = 0.75 x Pjack = 0.75 x 2464 = 1848KN

e = 1335mm

Mid Span top fiber

$\left(\frac{-P}{A}+\frac{P_\epsilon}{Z_t}\right) \Upsilon_{\text {inf }}-\frac{M_{\max }}{Z_t} \geq f_{t c}$

$
\left( \right. \frac{-\text{ 1848}x\,\,10^3}{\text{15}x\,\,10^5}\,\,+\,\,\frac{\text{ 1848}x\,\,10^3\,\,x\,\,1335}{1273585859}\left. \right)0.9 \,\,-\,\,\frac{\text{5875}x\,\,10^6}{1273585859}
$

= (-1.2 + 1.9)0.9 – 4.6

= – 3.97MPa

Mid Span bottom fiber

$\left(\frac{-P}{A}+\frac{-P_\epsilon}{Z_b}\right) \Upsilon_{\text {sup }}+\frac{M_{\min }}{Z_b} \leq f_{t t}$

$
\left( \right. \frac{-\text{ 1848}x\,\,10^3}{\text{15}x\,\,10^5}\,\,-\,\,\frac{\text{ 1848}x\,\,10^3\,\,x\,\,1335}{835000000}\left. \right)0.9 \,\,+\,\,\frac{\text{5875}x\,\,10^6}{835000000}
$

= (-1.2 – 2.95)0.9 + 7.0

= 3.26MPa

 

Conclusion

Applying prestressing force of 2464KN at eccentricity of 1335mm, the stress in the beam is within constraint at both transfer stage and serviceability stage. This is contrary to what is obtained in the stress verification here where the bottom fiber of the beam at service stage fails stress check when prestressing force of 1000KN is applied at eccentricity of 300mm.

 

You should also click here to study a worked example on the design of the beam for bending 

Author: Amuletola Rasheed

You can reach Amuletola Rasheed via amuletola@fppengineering.com

View all posts by Amuletola Rasheed >